The Catch

CESNET Maritime Communications

Write up by moNNster
VPN access

The only step required to complete this first task was to properly configure VPN connection and visit
mentioned host.

« — C O B wvpntest.cns-jv.tcc e @ & =

Confirmation code: FLAG{smna-m11d-hhta-ONOs}

Treasure map

Upon careful inspection of the provided map image, one could notice the flag string is scattered along
the red dashed line. It was as easy as following the path and concatenating all the characters.

Captain's coffee

The initial APl URL returns a JSON message stating Coffeemaker is ready and suggests visiting /docs.
Inspecting the source code there, another 2 URL’'s were discovered, one of which points to

openapi.json. There all the API calls required to list the coffee options and make an Espresso were
listed. As a further hint, Swagger was also mentioned so online documentation was also handy.

&< > C 8 coffee-maker.cns-v.tcc/coffeeMenu 1%

JSON RawData Headers

Save Copy CollapseAll Expand All -
,,,,,,,,, R sy =
V.4 =3 Raw Hex n = 0l Raw Hex n =
drLie o = 1 POST /makeCoffee/ HTTP/1.1 1 HTTP/1.1 200 OK
2 Host: coffee-maker.cns-jv.tcc 2 date: Mon, 02 Oct 2023 10:44:42 GMT
3 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:98.0) 3 server: uvicorn
Gecko/20100101 Firefox/98.0 4 content-length: 118
4 Accept: S content-type: application/json
text/htnl,application/xhtnl+xnl,application/xml;q=0.9, inage/a 5
vif,image/webp, */*;q=0.8 74
S Accept-Language: en-US,en;q=0.5 "message”:"Your Espresso is ready for pickup",
ink r 5 Accept-Encoding: gzip, deflate "validation_code":
7 Connection: close "Use this validation code FLAG{ccLH-dsaz-4KFA-P7GCH'
ink.1 5 Upgrade-Insecure-Requests: 1 by

9 Content-Length: 28

"drink_id":456597044

Ship web server

Here the first step was to inspect the certificate, where multiple SAN’s are mentioned. Pointing those
to the same IP address in hosts file was then enough to make them reachable.

localhost
localhost

Subject Alt Names

s S localhost ip6-localhost ip6-lod

DNS Name documentation.cns-jv.tcc e ip6-allnodes

DNS Name home.cns-jv.tcc i ip6-allrouters

documentation.cns-jv. tcc

home.cns-jv.tcc

DNS Name structure.cns-jv.tcc . .0. pirates.cns-jv.tcc
structure.cns-jv.tcc

DNS Name pirates.cns-jv.tcc

Next, each page contained one part of the flag encoded in base64 more or less in plain sight. Home
had the first part under each profile page, structure and pirates showed their bits at the bottom of the
page and while documentation was seemingly inaccessible, inspecting the source code and viewing
/styles.css revealed the last part.

Sonar logs

Here the first step was to covert all timestamps to one time zone, which was easily achieved with pytz
python library. Once normalized it was necessary to sort the log entries and filter out events where
objects were detected. Converting the hex values then produced what seemed like the flag string, but
one character was apparently misplaced. Luckily enough it only took a bit of manual correction to fix
that, and seemingly it could also be sorted by downgrading to an older version of the library according
to one of the hints.

Regular cube

This was a classic regex crossword, just this time it was 3 dimensional:

AR A Kn S F
WA W
"IN FAFNIN - F
N WA W WA
WL AN B JE Ly

3

N
o &
\, N\

Web protocols

This task suggests we look at web protocols on a given server, so scanning for available ports is a good
first step.

$ nmap -sV -p 1-9999 10.99.0.122
Starting Nmap 7.80 (https://nmap.org) at 2023-10-20 07:40 UTC
Nmap scan report for web-protocols.cns-jv.tcc (10.99.0.122)
Host is up (0.037s latency).
Not shown: 9994 closed ports

STATE SERVICE VERSION

open airport-admin?
open http Werkzeug httpd 1.0.1 (Python 3.10.13)
open http Werkzeug httpd 1.0.1 (Python 3.10.13)
8011/tcp open http nginx 1.22.1
8020 /tcp open ssl/http nginx 1.22.1
1 service unrecognized despite returning data. If you know the service/version

Here the flag parts were hidden in a session cookie as base64 strings upon hitting on each of the ports
using HTTP protocol, the only trick was for 5009 to downgrade to HTTP/0.9.

Apha-Zulu quiz

Not sure if there was any trick with this one, but it was possible to simply learn to identify few types
of data chunks and pass the test to be provided with the flag. CyberChef could also help a bit, e.g. with
its Analyse hash function.

Congratulations, FLAG{QOn7-MdEo-9cuH-aP6X}

What's this blob ?

00000000 50 4b 03 04 14 00 00 00 08 00 39 9b c7 56 db 90 |PK........ 9.¢V0. |
00000010 a9 3d 19 60 GO GO 10 00 OO0 0O 08 0O 00 0O 66 69 |C=............ fi|
00000020 6Cc 65 2e 74 78 74 05 40 bl 09 00 30 Oc 7a c5 d7 |le.txt.@+..0.zAx]|
00000030 84 b8 45 5a 30 ef Of 92 67 21 f4 5f 61 78 2c 50 |. EZ0i..g!6_ax,P|

00000040 4b 01 02 14 00 14 00 00 00 08 00 39 9b c7 56 db |K.......... 9.¢v0|

Captain’'s password

Provided the memory dump alongside a KeePass database, it was rather straight forward the aim here
may be to try and exploit CVE-2023-32784 which allows recovering master key from memory even if
KeePass workspace was locked. Quick web search suggested KeePass 2.X Master Password Dumper
was designed to do exactly that, and upon running it against the file it quickly revealed the potential
password. Looking at the output it wasn’t hard to guess the first two characters too.

With the database file unlocked, it was easiest to export all to a CSV file and the flag would stick out.

Naval chef's recipe

After some time playing around with different ways to exploit anything on the provided web, |
switched to using curl which complained about self-signed certificate while using HTTPS. By simply
trying to get a response via HTTP, I've quickly noticed the answer was right there in the 301 redirect
to HTTPS version of the page.

$ curl http://chef-menu.galley.cns-jv.tcc/
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.8//EN">
<html><head=
<title=301 Moved Permanently</title=
<meta http-equiv="refresh" content="0;url=https://chef-menu.galley.cns-jv.tcc">
</head><body=>

<h1=Moved Permanently</hi=
<p>The document has moved <a href="https://chef-menu.galley.cns-jv.tcc"=here<fa=.</p
=

<p style="display: none">The secret ingredient is composed of C6H1206, C6H806, dried
mandrake, [ANISVAYLRIZTERrF4BIEIF4, and C20H25N30. Shake, do not mix.</p=>
<script>window.location.href="https://chef-menu.galley.cns-jv.tcc'</script=

https://github.com/vdohney/keepass-password-dumper

Keyword of the day

Given the real application is reportedly hidden amongst a lot of fake ones, it’s first necessary to figure
out where all these are. Simple port scan revealed that they run in the range 60000-60500. By
inspecting the source code and resources, it became clear that the fake apps would generate a random
jitter before displaying one of 7 emoji images from /img/ directory also at random.

Listing all resources in that folder was not allowed and the delay made it particularly tricky to
enumerate all applications and resources by a script. First, | tried checking if all ports served all those
images and if any one of them would differ. To my disappointment, they all matched. Next, after some
experiments I've compared few apps to realize that the source code of each app differs by only a single
string present always at the same position in the code and of a same length. This made it possible to
extract this string easily and after hitting few dead ends, try the same approach to see if any app would
respond differently.

60000..60500

ip="10.99.0.155:"
status curl "$ip" /dev/null %{http_code
200

filename curl "Sip" "158706KaxUIc" 1874-1883
HE "y

status2 curl /dev/null "Surl" '%{http_code}'
200

found!"

' status:

And, bingo! While most responded with 404, one app gave a 301 pointing to the flag.
< C () E§ keyword-of-the-day.cns-jv.tcc:60257/948cd06ca7/

Your flag is FLAG{DEIE-AOr-pGV5-8MPc}

Cat code

The code consisted of two python scripts, meow and meowmeow which imported from the former.
Meow contained a constant named meeow, which appeared to possibly be obfuscated version of the
flag — length matched, positions where we’d expect the brackets differed slightly from other and were
preceded by what could well be a representation of the keyword “FLAG”. Inspecting the routines, one
apparently takes the meeow constant as an input and somehow decodes it by calling the other
function. The other one seemed to implement some recursion, which turned out to be
implementation of the Fibonacci sequence calculating the n-th integer based on the input.

Looking at meowmeow, it become clear one must answer the question “Who rules the world?” by
entering “kittens”. This keyword would then be used as an input to the functions imported from
meow. Since | suspected already that the input should be a number, | tried printing all the partial
products of the final print to quickly figure out we’re going to need the 770-th of the Fibonacci
sequence, even without fully understanding all the code.

B
7
F
B
g

|.I|

If the code is triggered as is, it should eventually produce the flag but will loop in the recursive for very
long time since the complexity of such algorithm is exponential, only meowing a lot during that. To
avoid that the easiest solution appeared to be finding the 770-th integer some other way and returning
that straight away. Luckily enough, the internet knew the answer, so it only took a bit of editing and
the flag was indeed revealed.

= if kitten th rld < UNITED:
{ retur the_world

return

Component replacement

Upon visiting the website, it complained about the IP we’re visiting from. The obvious solution was to
try and spoof this using the X-Forwarded-For header and since the given range was quite broad, it was
apt to script this.

96..111

1..254

ip="X-Forwarded-For: 192.168."
curl "sip" key-parts-list.cns-jv.tcc

As soon as responses started to contain some data, it was easy to just filter for required keywords.

S ./xfw.sh | grep -1 'enhancer\|flag'
Fuel efficiency - {MN90-V8Py-mSZV-JkRz};0

Fuel efficiency ﬁ {MN90-V8Py-mSZV-1kRz};0

Suspicious traffic

To look for any files exchanged over the network, | first tried exporting any objects from the packet
using Wireshark. Although some db files seem to be transferred over SMB, the one we’re looking for
was not amongst them. My next step was to filter HTTP traffic to see if anything useful would be in
there. There was again nothing really pointing to the exfiltrated file, but some pieces of information
that turned out to be useful later — credentials for accessing a webserver.

* Hypertext Transfer Protocol
GET /settings HTTP/1.1%r\n
Host: webserver:28888\ri\n
¥ Authorization: Basic YWRtaWdeamFtZXMuZjByLkhUVFAUNDYBODUWNw=="0r%n
Credentials: admin:james.f@r.HTTP.4645587
User-Agent: curl/7.74.8%r\n

Further inspecting the traffic, | also discovered some FTP credentials and files transferred. After some
struggling I've learned from the PORT command it was possible to calculate the port used as
213*256+251=54779 and filter respective traffic, which appeared to correspond to tcp.stream 6.

220 (vsFTPd 3.@.3)

USER james

331 Please specify the password.
PASS james.f@r.FTP.3618995

238 Login successful.

S¥5T

215 UNIX Type: LB

TYPE I

288 switching to Binary mode.
PORT 172,28,8,7,213,251

286 PORT command successful. Consider using PASV.
STOR home.tgz

158 Ok to send data.

226 Transfer complete.

PORT 172,28,8,7,149,183

288 PORT command successful. Consider using PASV.
5TOR etc.tpg=z

158 Ok to send data.

226 Transfer complete.

QUIT

221 Goodbye.

Extracting and inflating the file home.tgz, | already found some breadcrumbs pointing to the stolen
database.

o apt update
apt install apt-transport-http: -certificates curl gnupg2 tware-properties-common

6-cbc -salt -pbkdf2 -in SEEpefadbh -out secret. enc -k R3alyStr@ngP4ss!

Not much else could be found in any of the files, but what caught my attention was some encrypted
SMB3 traffic in tcp.stream 11. | shortly found an article called Decrypting SMB3 Traffic with just a
PCAP? Absolutely (maybe.) which was the key to solving this challenge. Following the instructions
here, | grabbed some of the NTLM details required to calculate the random session key.

https://medium.com/maverislabs/decrypting-smb3-traffic-with-just-a-pcap-absolutely-maybe-712ed23ff6a2
https://medium.com/maverislabs/decrypting-smb3-traffic-with-just-a-pcap-absolutely-maybe-712ed23ff6a2

¥ NTLM Secure Service Provider
NTLMS5P identifier: NTLMSSP
NTLM Message Type: NTLMSSP_AUTH (@xP0000083)
Lan Manager Response: @@@gggbepeeapoaapaaasppaanaad
LMv2 Client Challenge: G282282282822080
NTLM Response: 8bc34ae8e?sfedh84173966c2T632eb4a1
Domain name: LOCAL.TCC
User name: james_admin
Host name: 71FDBYE3E969
Session Key: 4292dac3c7a@slefsb2ec969elefadbo

For the next step, it was necessary to figure out James'’s password. It took me a while to realize it may
be following the same format as the 2 already known sets of credentials. Still following the article, I've
created a wordlist using mp64 as james_admin.fOr.SMB. followed by 7 digits and quickly found the
valid one with hashcat.

Hash.Mode

Hash.T

Using the provided python script and password, | was now able to calculate the session random key
and configure Wireshark to decrypt it.

Sure enough, the session was now easy to read, and more traces of the lost file surfaced. It was even
possible to extract the file now and the last step was to decrypt it with the previously recovered
password using openssl to get the flag.

)))))))))))) R
I 444467475 TSecr=11891

44842 » 445 [ACK]
Session Setup Request, NTLMSSP_AUTH, User: LOCAL.TCC\james_admin

SIiMP3 * | sMB2 (server Message Block Protocol version 2) Session Setup Response

im:z [] Use the full fie name s File ID when exporting an SMB2 obiect Decrypted SMB3;Tree Connect Request Tree: \\smbserver2\IPC$
Decrypted SMB3;Tree Connect Response

SMBDirect [Reassembie Named Pipes over SMB2 Decrypted SMB3;Toct]l Request FSCTL_DFS_GET_REFERRALS, File: \smbserver2\vault

m; [verify sMB2 Signatures Decrypted SMB3;Toctl Response, Error: STATUS_NOT_FOUND

. . Decrypted SMB3;Tree Disconmect Request

smep e o tEm i | = Decrypted SMB3;Tree Disconnect Response

SMRSE Decrypted SMB3;Tree Connect Request Tree: \\smbserver2\vault

SMTP M Secret session key to use for decryption X | Decrypted SMB3;Tree Connect Response

SMUX Decrypted SMB3;Create Request File: secret.db.enc

zmw Session ID Session Key Server-to-Client Client-to-Server Decrypted SMB3;Create Response File: secret.db.enc

snort 49b136b000000000 7aO3dee25dedc2141657e7037dddbaM (zero length) (zero length) sk i SY [ESHRACKRSeqT1 B35 i 1B dvl et 1 28R Cene 720 RTsva IS ERIGTIFSR)
salted §\00241020]\0319\032~| 92.UP\0179 9 \b\ay 9 @ PR 19y\025¢ Hcid+

Socks 445 =+ 44842 [ACK] Seq=1484 Ack=9875 Win=61312 Len=@ TSwal=1189238815 TSecr=14¢

SolarEdge Necrunted SMA3:Urite Resnanse

